Selective ammoxidation of isobutane on a crystalline SbRe₂O₆ catalyst

Haichao Liu, Takafumi Shido and Yasuhiro Iwasawa*

Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo-7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan. E-mail: Iwasawa@chem.s.u-tokyo.ac.jp

Received (in Cambridge, UK) 20th July 2000, Accepted 31st August 2000 First published as an Advance Article on the web 18th September 2000

The catalytic ammoxidation of isobutane to methacrylonitrile at 673 K proceeds on a new class of Re mixed-oxide $SbRe₂O₆$ with alternate $(Re₂O₆)³⁻$ and $(SbO)⁺$ layers, where **ammonia is prerequisite for the C–H bond scission of isobutane.**

Much attention has been devoted to selective ammoxidation of light alkanes from both fundamental and industrial interests. To date, a large number of multicomponent metal-oxide catalysts containing V, Mo, *etc*. have been explored to develop efficient catalytic systems for selective ammoxidation. However, owing to the inertness of light alkanes, very few catalysts have showed good performances that are comparable to those for the corresponding alkenes.¹⁻⁴ There is thus a clear need to develop new catalytic materials for the selective ammoxidation of light alkanes. Except for the oxidation of methanol and ethanol, compared with V, Mo and W there are limited uses of Re as a key element in selective ammoxidation/oxidation, in spite of Re having similar redox properties to those of V, Mo and W oxides.5–7 Here, we report a first Re mixed-oxide catalyst (crystalline $SbRe₂O₆$) active for the selective ammoxidation of isobutane (i-C₄H₁₀) to methacrylonitrile (MAN) at 673 K, where $NH₃$ not only stabilizes the catalyst but also promotes the C–H bond scission of i-C₄H₁₀.

 $SbOReO₄·2H₂O$, $SbRe₂O₆$ and $Sb₄Re₂O₁₃$ were synthesized in the similar way to that reported previously.6–12 The specific surface areas of the three samples were approximately $1 \text{ m}^2 \text{ g}^{-1}$. For comparison, Sb_2O_3 -supported Re_2O_7 catalyst $(Re_2O_7/$ $Sb₂O₃$; 10 wt% Re) was prepared by an impregnation method using an aqueous solution of $NH_4\text{ReO}_4$.⁹ A coprecipitated $SbRe₂O_x$ catalyst (copr. $SbRe₂O_x$) was also prepared by a coprecipitation method using an ethanol solution of ReCl_3 and SbCl3, followed by washing with water to eliminate the residual Cl ions from the sample. Ammoxidation reactions were carried out in a continuous-flow, fixed-bed reactor at 673 K under the conditions of 10% i-C₄H₁₀, 15% NH₃ and 25% O₂ balanced with He and a gas-hourly-space-velocity (GHSV) of 5000 h^{-1} at atmospheric pressure. Prior to each run, the catalysts (typically 0.3 g) were pretreated at 673 K under He for 1 h. The reactants and products were analyzed by two on-line gas chromatographs with Unibeads C, Gaskuropack 54 and VZ-10 columns. The conversion of NH₃ to N₂ and NO_x was $\lt 10\%$ under the present reaction conditions.

Table 1 presents the conversions, reaction rates and selectivities of the i- C_4H_{10} ammoxidation on the various Re–Sb–O catalysts and bulk ReO_x and SbO_x at 673 K. SbORe O_4 ·2H₂O, Sb_4 Re₂O₁₃ and Sb oxides such as Sb_2O_3 and Sb_2O_4 showed no activity. Bulk Re_2O_7 was active solely for i-C₄H₁₀ combustion to $CO₂$. Bulk $ReO₃$ and $ReO₂$ produced MAN, but the selectivities were lower than 10% and the main product was CO_2 . $\text{Re}_2\text{O}_7/\text{Sb}_2\text{O}_3$ or mechanically mixed $\text{Re}_2\text{O}_7/\text{Sb}_2\text{O}_3$ samples showed almost no activity for the $i-C_4H_{10}$ ammoxidation either. Copr.SbRe₂O_x produced i-C₄H₈ (20.6% selectivity), but no formation of MAN was observed. Isobutane combustion was dominant also with this catalyst. Only the $SbRe₂O₆$ among these samples was active for the ammoxidation of i -C₄H₁₀ to MAN. The selectivities to MAN and to the sum of MAN + i-C₄H₈ at the steady-state conversion of 4.4% were 44.9 and 84.3%, respectively. A decrease in the GHSV from 5000 to 2500 h⁻¹ increased the conversion to 7.5% while keeping good selectivities to MAN and to $MAN + i-C_4H_8$, as shown in parentheses in Table 1.

The active $SbRe₂O₆$ compound consists of connected, alternate octahedral $(Re₂O₆)³⁻$ and $(SbO)⁺$ layers and grows as thin plate-like crystals preferably exposing the (100) plane.12 The square basal (100) faces of $SbRe₂O₆$ crystals remained unchanged before and after the ammoxidation at 673 K as imaged by scanning electron microscopy. Further, neither change nor modification of the surface composition and crystallinity were observed by means of X-ray diffraction, Xray photoelectron spectroscopy (XPS) and *in-situ* micro confocal laser Raman spectroscopy. The results indicate that the crystalline $SbRe₂O₆$ works as a promising catalyst for the ammoxidation. The fresh SbORe O_4 -2H₂O and Sb₄Re₂O₁₃ possess Re7+ species, but the Re species were reduced to two valent states (possibly Re^{6+} and Re^{4+}) which exhibit XPS binding energies of 42.3 and 44.7 eV, and 45.1 and 47.5 eV for Re $4f_{7/2}$ and Re $4f_{5/2}$, respectively (compared to C 1s = 284.6) eV) under the ammoxidation conditions. These binding energies are similar to those for the $SbRe₂O₆$ surface after ammoxidation at 673 K. Thus, the difference in the catalytic performances of the crystalline Re–Sb–O catalysts may not be

Table 1 Isobutane ammoxidation on different Re–Sb–O catalysts and bulk ReO*^x* and SbO*^x* at 673 K

	Conversion (%)	Reaction rate/ μ mol g-cat ⁻¹ h ⁻¹	Selectivity (%)				
			$MAN + i-C4H8$	MAN	i -C ₄ H ₈	CH ₃ CN	CO ₂
SbRe ₂ O ₆	4.4 $(7.5)^a$	785.6 $(669.5)a$	84.3 $(82.6)^a$	44.9 $(44.2)^a$	39.4 $(38.4)^a$	4.7 $(5.6)^a$	10.2 $(11.4)^a$
SbOReO ₄ ·2H ₂ O	Ω	θ					
$Sb_4Re_2O_{13}$	0						
$mix-Re_2O_7-Sb_2O_3$	0.5	89.3	trace	Ω	trace		~100
copr.SbRe ₂ O _x	0.4	71.4	20.6	θ	20.6		79.4
Re_2O_7/Sb_2O_3	0.1	17.8					100
Re ₂ O ₇	11.6	2071.3		0			100
ReO ₃	2.1	374.9	31.5	7.7	23.8	25.7	42.6
ReO ₂	5.6	999.9	31.0	9.1	21.9	32.1	36.4
Sb_2O_3		θ					
Sb_2O_4	Ω	$\overline{0}$					

Fig. 1 Yields of MAN (∇ , \square) and i-C₄H₈ (\bullet , \square) as a function of the number of pulses of i-C₄H₁₀ alone (\Box , \bigcirc) and an i-C₄H₁₀–O₂ mixture (∇ , \bullet) on an NH₃-preadsorbed SbRe₂O₆ catalyst at 673 K.

due to the difference in their surface Re oxidation states, but to the difference in their surface structures. This is entirely different from the finding in the selective oxidation of i -C₄H₁₀ (773 K) and i -C₄H₈ (673 K) to methacrolein (MAL) that the activities of the three crystalline Re–Sb–O compounds are ascribed to a cooperation between Re_2O_7 and $\text{Sb}_4\text{Re}_2\text{O}_{13}$, both being formed by decomposition of the compounds under the oxidation conditions.8–10 It is also different from the feature observed in the ammoxidation of $i-C_4H_8$ where the three Re– Sb–O compounds are more or less active at 673 K.13

It is to be noted that $SbRe₂O₆$ was inactive for i-C₄H₁₀ selective oxidation as well as for the total oxidation at 673 K in the absence of $NH₃$, whereas it exhibited a good performance for i-C₄H₁₀ ammoxidation at 673 K (Table 1). These results may indicate a promoting effect of NH₃ on the C–H activation in i-C₄H₁₀. To examine the role of NH₃, a series of pulse experiments were conducted on $SbRe₂O₆$ at 673 K in Fig. 1. No products were produced by pulsing $i - C_4H_{10}$ alone or an i -C₄H₁₀-O₂ mixture on to the SbRe₂O₆ catalyst, which indicates that no C–H bond breaking in i -C₄H₁₀ molecules occurs on the catalyst. However, when the catalyst was pretreated with an NH_3 pulse (the catalyst surface was saturated with NH_x), $i-C_4H_{10}$ was converted to MAN and $i-C_4H_8$. The promotion effect of NH_3 pretreatment on the formation of MAN and i- C_4H_8 was more remarkable with the i- $C_4H_{10}-O_2$ pulse reaction as shown in Fig. 1. The formation of MAN and $i-C_4H_8$ decreased with the number of the $i - C_4H_{10}-O_2$ pulses. The pulse experiments show that adsorbed NH*^x* species are incorporated to the ammoxidation of i -C₄H₁₀ to form MAN. These results demonstrate that NH₃ not only behaves as a reactant but also plays a crucial role in enhancing and/or generating the activity of $SbRe₂O₆$ for the dehydrogenation (C–H bond breaking) of i- C_4H_{10} to i-C₄H₈. Upon pulsing NH₃ on SbRe₂O₆, N₂ and H₂O were produced indicating the reaction of $NH₃$ with the lattice oxygen atoms of $SbRe₂O₆$ to form oxygen vacancies that may also be responsible for the C–H bond breaking. To our knowledge, $SbRe₂O₆$ is the first case where NH₃ changes an inactive catalyst to an active one for light alkane activation, although promoting effects of $NH₃$ have been documented.^{14,15} Further study is necessary for depicting a detailed mechanism of the promoting effect of NH_3 on the $SbRe₂O₆$ selective catalysis.

In conclusion, a new class of Re mixed-oxide $SbRe₂O₆$ catalyzes the selective ammoxidation of i -C₄H₁₀ to MAN. The activity of $SbRe₂O₆$ may be relevant partly to its specific crystal structure. The presence of ammonia is considered to be prerequisite, not only for maintaining the stable crystal structure of SbRe₂O₆, but also for promoting SbRe₂O₆ activity for C–H bond breaking in $i - C_4H_{10}$ under the ammoxidation conditions.

This work has been supported by Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Corporation (JST). The authors acknowledge Professor H. Imoto, Utsunomiya University, for his helpful discussion on the preparation and structure of $SbRe₂O₆$.

Notes and references

- 1 R. K. Grasselli, *Catal. Today*, 1999, **49**, 141.
- 2 S. Albonetti, F. Cavani and F. Trifiro, *Catal. Rev.-Sci. Eng.*, 1996, **38**, 413.
- 3 C. J. Pereira, *Science*, 1999, **285**, 670.
- 4 T. Inoue, S. T. Oyama, H. Imoto, K. Asakura and Y. Iwasawa, *Appl. Catal., A*, 2000, **191**, 131.
- 5 J.-M. Jehng, H. Hu, X. Gao and I. E. Wachs, *Catal. Today*, 1996, **28**, 335.
- 6 W. T. A. Harrison, A. V. P. Mcmanus, A. P. Kaminsky and A. K. Cheetham, *Chem. Mater.*, 1993, **5**, 1631.
- 7 Y. Yuan, H. Liu, H. Imoto, T. Shido and Y. Iwasawa, *Chem. Lett.*, 2000, 674.
- 8 H. Liu, E. M. Gaigneaux, H. Imoto, T. Shido and Y. Iwasawa, *J. Phys. Chem. B*, 2000, **104**, 2033.
- 9 E. M. Gaigneaux, H. Liu, H. Imoto, T. Shido and Y. Iwasawa, *Top. Catal.*, 2000, **11**–**12**, 185.
- 10 H. Liu, E. M. Gaigneaux, H. Imoto, T. Shido and Y. Iwasawa, *Appl. Catal. A: General.*, 2000, **202**, 251.
- 11 H. Watanabe and H. Imoto, *Inorg. Chem.*, 1997, **36**, 4610.
- 12 H. Watanabe, H. Imoto and H. Tanaka, *J. Solid State Chem.*, 1998, **138**, 245.
- 13 H. Liu, H. Imoto, T. Shido and Y. Iwasawa, submitted for publication.
- 14 V. D. Sokolovskii, A. A. Davydov and O. Yu. Ovsitser, *Catal. Rev.-Sci. Eng.*, 1995, **37**, 425.
- 15 G. Centi and S. Perathoner, *Catal. Rev.-Sci. Eng.*, 1998, **40**, 175.